Annotation 2021-05-07 163345.png

WHAT WE DO.

We build software tailored to meet your needs, using optimisation, AI, machine learning and data analytics.

 

Customized software.

Our team of analysts and software experts are here to deliver for you, advanced, fully customized solutions for your unique requirements. We cover the complete delivery process including software architecture, design, development, database, testing, DevOps and deployment.

We believe in delivering value built on a close collaboration with our clients, starting small, prototyping, building iteratively and working up to a full scale solution while demonstrating value at every stage. We know that the discovery process continues throughout the entire project and we follow Agile and Lean software development paradigms to deliver maximum value as soon as possible.

We use principles from Cognitive Engineering and Design Thinking to improve the user experience of our products, and integrate effectively with your existing systems and processes.

Consulting services.

We are a community of specialists with deep and diverse technical expertise, ranging individually from 20-50 years, in the following fields:

  • Optimisation, Scheduling & Planning

  • Artificial Intelligence, Data Science, Machine Learning

  • Signal Processing, Statistics

  • Computer Vision and Image Understanding

  • Cognitive Engineering

  • System Design

Leverage our science and engineering background, combined with industrial knowledge, to deliver for you.

We have worked in your industry.

 
 

Defence

GettyImages-1225772437.jpg

Energy

GettyImages-1136829712.jpg

  1. Mbeutcha, Y., Gendreau, M. & Emiel, G. (2021). Benefit of PARMA Modeling for Long-Term Hydroelectric Scheduling Using Stochastic Dual Dynamic Programming. Journal of Water Resources Planning and Management, 147(3), 12 pages. Retrieved from https://doi.org/10.1061/(ASCE)WR.1943-5452.0001333

  2. Malandra, F., Kizilkale, A.C., Sirois, F., Sanso, B., Anjos, M.F., Bernier, M., Gendreau, M. & Malhame, R.P. (2020). Smart Distributed Energy Storage Controller (smartDESC). Energy, 210, 10 pages. Retrieved from https://doi.org/10.1016/j.energy.2020.118500

  3. Marchand, A., Gendreau, M., Blais, M. & Emiel, G. (2018). Fast near-optimal heuristic for the short-term hydro-generation planning problem. IEEE Transactions on Power Systems, 33(1), 227-235. Retrieved from https://doi.org/10.1109/tpwrs.2017.2696438

  4. Froger, A., Gendreau, M., Mendoza, J.E., Pinson, É. & Rousseau, L.-M. (2016). Maintenance scheduling in the electricity industry: A literature review. European Journal of Operational Research, 251(3), 695-706. Retrieved from https://doi.org/10.1016/j.ejor.2015.08.045

  5. Carpentier, P.-L., Gendreau, M. & Bastin, F. (2015). Managing hydroelectric reservoirs over an extended horizon using benders decomposition with a memory loss assumption. IEEE Transactions on Power Systems, 30(2), 563-572. Retrieved from https://doi.org/10.1109/TPWRS.2014.2332402

Logistics

GettyImages-1124533318.jpg
  • WCCI 2000 Electronic Vehicle Routing Problem 2nd place

  • Moreno, A., Alem, D., Gendreau, M. & Munari, P. (2020). The heterogeneous multicrew scheduling and routing problem in road restoration. Transportation Research Part B: Methodological, 141, 24-58. Retrieved from https://doi.org/10.1016/j.trb.2020.09.002

  • Cote, J.-F., Gendreau, M. & Potvin, J.-Y. (2020). The Vehicle Routing Problem with Stochastic Two-Dimensional Items. Transportation Science, 54(2), 453-469. Retrieved from https://doi.org/10.1287/trsc.2019.0904

  • Gmira, M., Gendreau, M., Lodi, A. & Potvin, J.-Y. (2020). Travel speed prediction based on learning methods for home delivery. EURO Journal on Transportation and Logistics, 16 pages. Retrieved from https://doi.org/10.1016/j.ejtl.2020.100006

  • Lannez, S., Artigues, C., Damay, J. & Gendreau, M. (2015). A railroad maintenance problem solved with a cut and column generation matheuristic. Networks, 66(1), 40-56. Retrieved from https://doi.org/10.1002/net.21605

  • Rahimi-Vahed, A., Gabriel Crainic, T., Gendreau, M. & Rei, W. (2015). Fleet-sizing for multi-depot and periodic vehicle routing problems using a modular heuristic algorithm. Computers and Operations Research, 53, 9-23. Retrieved from https://doi.org/10.1016/j.cor.2014.07.004

  • El Hachemi, N., El Hallaoui, I., Gendreau, M. & Rousseau, L.-M. (2015). Flow-based integer linear programs to solve the weekly log-truck scheduling problem. Annals of Operations Research, 232(1), 87-97. Retrieved from https://doi.org/10.1007/s10479-014-1527-4

Environment & Agriculture

GettyImages-637583458.jpg
  1. Rachmawati, R. Ozlen, M. Hearne, J. W. Kuleshov, Y. “Using improved climate forecasting in cash crop planning”. In: SpringerPlus 3.1 (2014), p. 422.

    Horton, P. M. Hearne, J. W. Apaloo, J. Conlong, D. E. Way, M. J. Uys, P. “Investigating strategies for minimising damage caused by the sugarcane pest Eldana saccharina”. In: Agricultural Systems 74.2 (2002), pp. 271–286.

  2. Xing, J., Sieber, R., Caelli, T. (2018). A Scale-invariant Change Detection Method for Land Use/Cover           Change Research. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 252-264. 

  3. Alrashidi, M. E. Hearne, J. W. McArthur, L. Zorzan, C. “Cooperative considerations for a mobile resource that transcends property boundaries”. In: Natural Resource Modeling 30.4 (2017). e12138, e12138–n/a. issn: 1939-7445. doi: 10.1111/nrm.12138. url: http://dx.doi.org/10.1111/nrm.12138.

  4. Mwakiwa, E. Hearne, J. W. Stigter, J. D. De Boer, W. F. Henley, M. Slotow, R. Van Langevelde, F. Peel, M. Grant, C. C. Prins, H. H. “Optimization of net returns from wildlife consumptive and non-consumptive uses by game reserve management”. In: Environmental Conservation 43.02 (2016), pp. 128–139.

  5. Zhou, J., Bai, X., and Caelli, T. ((2015) Computer Vision and Pattern Recognition in Environmental Informatics. IGI Global.

  6. Kalácska, M., Sánchez-Azofeifa G. A., Caelli T., Rivard B., and Boerlage B. (2005) Estimating Leaf Area Index from Satellite Imagery using Bayesian Networks. IEEE Transactions on  Geoscience and Remote Sensing, 43, 8, 1866-1873. 

  7. Hearne, J. Apaloo, J. “Resolving an issue arising from translocation strategy for saving the black rhino”. In: Journal of Mathematics, Statistics and Operations Research (JMSOR) 1.1 (2014).

  8. Castro, K. L., Sánchez-Azofeifa, G.A, and Caelli, T.(2004).  Discrimination of lianas and trees with leaf-level hyperspectral data. Remote Sensing of Environment, 90, 3, 353-372.

  9. Franke, A., Caelli, T. and Hudson, R.(2004). Analysis of Movements and Behaviour of Caribou (Rangifer tarandus) using Hidden Markov Models. Ecological Modeling, 173, 2-3, 259-270.

Health

GettyImages-1287172736.jpg
  1. Johns, H.  Hearne, J.  Bernhardt, J.   Churilov, L. “Clustering clinical and health care processes using a novel measure of dissimilarity for variable-length sequences of ordinal states“. In: Statistical Methods in Medical Research,  (2020), 0962280220917174.

  2. Clay, N. M. Abbasi, B. Eberhard, A. Hearne, J. “On the volatility of blood inventories”. In: International Transactions in Operational Research 25.1 (2018), pp. 215–242. issn: 1475-3995. doi: 10.1111/itor.12326. url: http://dx. doi.org/10.1111/itor.12326.

  3. Keshtkaran, M. Churilov, L. Hearne, J. Abbasi, B. Meretoja, A. “Validation of a decision support model for investigation and improvement in stroke thrombolysis”. In: European Journal of Operational Research 253.1 (2016), pp. 154–169.

  4. Mahnam, M., Gendreau, M., Lahrichi, N. & Rousseau, L.M. (2017). Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem. Physics in Medicine and Biology, 62(14), 5589-5611. Retrieved from https://doi.org/10.1088/1361-6560/aa7447

  5. Li, S., Caelli, T., Ferraro, M. and Pathirana, P.N.(2014) A novel bio-kinematic encoder for human exercise representation and decomposition - Part 1: Indexing and modelling. International Conference on Control, Automation and Information Sciences (ICCAIS).

  6. Lee, Y., Pathirana, P., Steinfort, C., Caelli, T. (2014) Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar, IEEE Journal of Translational Engineering in Health and Medicine, 2, 1-14.

  7. Jafari, N. Hearne, J. Churilov, L. “Why caution is recommended with post-hoc individual patient matching for estimation of treatment effect in parallel-group randomized controlled trials: The case of acute stroke trials”. In: Statistics in medicine 32.25 (2013), pp. 4467–4481.

Disaster Management

GettyImages-1176455922.jpg
  • Liberatore, Federico,   León. Javier,  Hearne, John,  Vitoriano, Begoña “Fuel management operations planning in fire management: A bilevel optimisation approach”. In: Safety Science 137, May 2021, 105181. https://doi.org/10.1016/j.ssci.2021.105181

  • Loza-Hernandez, L. & Gendreau, M. (2020). A framework for assessing hazmat risk at nodes of transport networks. International Journal of Disaster Risk Reduction, 50, 13 pages. Retrieved from https://doi.org/10.1016/j.ijdrr.2020.101854

  • León, J., Reijnders, V.M.J.J., Hearne, J.W. et al. “A Landscape-Scale Optimisation Model to Break the Hazardous Fuel Continuum While Maintaining Habitat Quality”. In: Environmental Modeling and Assessment (2018). https://doi.org/10.1007/s10666-018-9642-2

  • Roozbeh, I. Ozlen, M. Hearne, J. W. “An Adaptive Large Neighbourhood Search for asset protection during escaped wildfires”. In: Computers & Operations Research 97 (2018), pp. 125–134.

  • Rachmawati, R. Ozlen, M. Hearne, J. Reinke, K. “Fuel treatment planning: Fragmenting high fuel load areas while maintaining availability and connectivity of faunal habitat”. In: Applied Mathematical Modelling 54 (2018), pp. 298–310.

  • van der Merwe, M. Ozlen, M. Hearne, J. W. Minas, J. P. “Dynamic rerouting of vehicles during cooperative wildfire response operations”. In: Annals of Operations Research 254.1 (2017), pp. 467–480. issn: 1572-9338. doi: 10.1007/s10479-017-2473-8. url: https://doi.org/10.1007/s10479-017-2473-8.

  • Minas, J. P. Hearne, J. W. “An optimization model for aggregation of prescribed burn units”. In: Top 24.1 (2016), pp. 180–195.

  • Rachmawati, R. Ozlen, M. Reinke, K. J. Hearne, J. W. “An optimisation approach for fuel treatment planning to break the connectivity of high-risk regions”. In: Forest Ecology and Management 368 (2016), pp. 94–104.

  • Minas, J. P. Hearne, J. W. Martell, D. L. “A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts”. In: European Journal of Operational Research 232.2 (2014), pp. 412–422.

Some books by our experts